
Pricing forward starting options under regime switching jump
diffusion models

WEI WANG
Ningbo University

Department of Mathematics
Feng Hua Street 818, Ningbo City

CHINA
wangwei2@nbu.edu.cn

LIEGANG DONG
Shanghai University of Finance and Economics

School of Finance
Guo Ding Street 777, Shanghai City

CHINA
dongliegang1977@163.com

XIAONAN SU
Nanjing Audit University

School of Science
Yu Shan West Street 86, Nanjing City

CHINA
suxiaonanecnu@163.com

Abstract: This paper studies the pricing of forward starting options under regime switching jump diffusion models.
We suppose that a market economy has only two states, one is a stable state, the other is a high volatility state. The
dynamics of a risky asset is modeled by a geometry Brownian motion when the market state is stable, otherwise,
it follows a jump diffusion model. We propose two types of regime switching jump diffusion models: one is a
two-state regime switching Merton jump diffusion model, and the other is a two-state regime switching double
exponential jump diffusion model. Finally, some analytic formulas for pricing forward starting options are derived
under these regime switching jump diffusion models.
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1 Introduction
Option pricing is an important research field in math-
ematical finance. The traditional Black-Scholes op-
tion pricing formula has been widely used for pric-
ing options in finance industry. However, there are
a large number of empirical results indicate that the
asset price process follows a geometric Brownian mo-
tion is not realistic, since it cannot explain the two em-
pirical phenomena: the asymmetric leptokurtic fea-
tures and the ”volatility smile” phenomenon. In or-
der to overcome these disadvantages, many differen-
t models had been proposed, for example, stochas-
tic volatility models, stochastic interest rate model-
s, and regime-switching models et al. For example,
Li et al.[1], Wang et al.[2], Chang et al.[3] and Du-
an et al.[4]. Moreover, many empirical results also
show that the risky asset price processes have jumps s-
ince some rare events can lead to brusque variations in
prices. Hence, many jump diffusion models had been
presented to describe the dynamics of the risky assets.
Studies include those of Merton [5], Kou [6, 7], Ahn
et al. [8] and others.

Recently, regime switching models have received

much attention by researchers(see, e.g. [9, 10, 11,
12, 13]). It is especially important to incorporate the
regime switching effect since there could be substan-
tial changes in the economic condition over a long
period of time. Edwards [14] incorporated regime
switching into the risky asset price process and pre-
sented a new financial model to describe the dynam-
ics of the risky assets. He supposed that an economy
had two states, a state was high volatility, and the oth-
er was stable. When the state of the market econo-
my was high volatility, the risky assets price followed
a Lévy process, otherwise, the dynamics of the risky
assets satisfied a geometry Brownian motion.

Inspired by Edwards [14], we combine the jump
diffusion model with Black-Scholes model and pro-
vide a two-state regime switching jump diffusion
model to describe the dynamics of the risky assets.
We suppose that a market economy has two states, a
stable state and a high volatility state. The dynamics
of a risky asset follows different stochastic processes
in different states of the market economy: the risky
asset price is driven by a geometric Brownian motion
when the market is stable, while the risky asset price
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follows a jump diffusion process if the market is high
volatility. The regime switching jump diffusion mod-
el describes two different types of jumps. The regime
switching incorporate structural changes in asset price
dynamics which are attributed to structural changes
in economic conditions, and the jump diffusion de-
scribes jumps which are attributed to some financial
news and lead to spikes in prices.

As an application, we investigate the pricing
of forward starting options when the dynamics of
the risky assets are described by a two-state regime
switching jump diffusion process. Although the for-
ward starting options are a class of quite simple exot-
ic derivatives, their pricing can be demanding. Until
recently, there is only a few researches on this sub-
ject. Kruse and Nögel [15] gave a pricing formula
of forward starting call option in Heston’s stochastic
volatility model. Ahlip and Rutkowski [16] extended
the model in [15] to a stochastic interest rate frame-
work, and obtained the price of forward starting call
option. Ramponi [17] employed the Fourier transfor-
m methods to pricing forward starting options under
a regime switching jump diffusion model. The major
differences between their paper and this one are that:
first, the model considered here is different from that
in [17]. Second, we employ a method which is dif-
ferent from that in [17], and provides the analytic for-
mulas for pricing forward starting options. This paper
consists of two parts. The first part supposes that the
dynamics of the risky asset is described by a two-state
regime switching Merton jump diffusion process, and
provides the analytic pricing formula of forward start-
ing options. The other part supposes that the risky as-
set is modeled by a two-state regime switching double
exponential jump diffusion process, and the analytic
pricing formulas of forward starting options are also
obtained.

This paper is organized as follows: a two-state
regime switching jump diffusion model is introduced
in Section 2. Section 3 presents the pricing formulas
of forward starting options under a two-state regime
switching Merton jump diffusion model. Section 4
provides the pricing formulas of forward starting op-
tions under a two-state regime switching double expo-
nential jump diffusion model. The final section gives
a conclusion.

2 A two-state regime switching jump
diffusion model

We consider a finite time horizon [0, T ] and a proba-
bility space (Ω,F , P ), where P is a real world mea-
sure. Uncertainty is represented by a complete prob-

ability space (Ω,F , {Ft}t∈[0,T ], P ). The states of the
market economy are modeled by a stationary contin-
uous time Markov chain process ε = {εt}t∈[0,T ]. To
simplify our financial model, we suppose that ε has
only two states {e1, e2}, where state e1 = (1, 0)

′ ∈
R2 and e2 = (0, 1)

′ ∈ R2 of the chain can be ex-
plained to represent a ”high volatility ” state and a
”stable” state, respectively. Assume that the Markov
chain process ε has a generator A = (aij)i,j=1,2 with
stationary transition probability given by the follow-
ing

P ij(∆t) = aij∆t+ o(∆t), i ̸= j,

P ii(∆t) = 1− aii∆t+ o(∆t),

where

P ij(∆t) = P (εt+∆t = ej |εt = ei) . (1)

We consider a financial market with two traded
assets, a riskless bond and a stock. The riskless bond
price process B = (Bt) satisfy the following

dBt = rBtdt, (2)

where r is the instantaneous interest rate. For sake of
convenience, we assume B0 = 1.

In this paper, we adopt a two-state regime switch-
ing jump diffusion model to describe the dynamics of
a stock. We assume that the stock price follows a jump
diffusion process when the state of the market econo-
my is e1, whereas the stock price follows the Black-
Scholes model when the state of market economy is
e2. Let Jt denote the occupation time of ε in state e1
over the time period [0, t], then

Jt =

∫ t

0
I{εs=e1}ds, (3)

where I{·} is a indictor function. The stock price pro-
cess S = (St) according to

St = S0 exp

µt+ σW̃t −
1

2
σ2t+

NJt∑
j=1

Zj − λβJt

 ,
(4)

where Nt is a Poisson process with intensity λ, W̃ is
a standard P Brownian motion, µ > 0 and σ > 0 are
the appreciation rate and the volatility of the stock S,
respectively, and {Zj}j=1,2,... are a sequence of inde-
pendent and identically distribution random variables
with probability density function f(z). The term λβJt
is included explicitly in (4) to compensate for the p-
resence of the jumps in share price, hence it is chosen
such that β = EP

[
eZj − 1

]
. Moreover, we assume

that W̃ , ε,N , and Z = (Zj)j=1,2,... are mutually in-
dependent.
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3 Risk neutral martingale measures

In this paper, we consider a financial market in which
only a stock and a riskless bond can be traded. The
share price of stock is described by a regime switching
jump diffusion model, with more stochastic risk fac-
tors than tradable assets. Hence, this financial market
is incomplete, and the risk neutral martingale measure
is not unique. For pricing forward starting option-
s, we need choose a risk neutral martingale measure
from the set of risk neutral martingale measures. Let
(Fε

t )0≤t≤T denote the P augmentations of the natural
filtration generated by Markov-chain ε and Ht denote
the σ-algebra Fε

T ∨ Ft. Now, we first define a new
probability measure by the following

dQ

dP

∣∣∣
Ht

= Λt,

and Λt is given by

Λt = exp
{
θW̃t −

1

2
θ2t+ ϑ

NJt∑
j=1

Zj

− λJtEP

[
eϑZj − 1

] }
, (5)

where θ, ϑ are explained as the market prices of Brow-
nian motion risk and jump risk.

Under an equivalent martingale measure, the dis-
counted stock price process S̃t = e−rtSt is a mar-
tingale, this is called the martingale condition. As in
[11], due to the presence of the uncertainty generated
by the Markov-chain process ε, the martingale condi-
tion is defined with respect to the enlarged filtration
H.

Proposition 1 The martingale condition holds if θ
and ϑ satisfy,

θ =
r − µ

σ
, (6)

EP

[
e(ϑ+1)Zj

]
= β + EP

[
eϑZj

]
. (7)

Proof. For s < t, using the Bayes formula, we have

EQ

[
S̃t
∣∣∣Hs

]
=

EP

[
S̃tΛt

∣∣∣Hs

]
EP

[
Λt

∣∣∣Hs

]
= EP

[
S̃tΛt

Λs

∣∣∣Hs

]

= S̃sEP

[
S̃tΛt

S̃sΛs

∣∣∣Hs

]
.

By (4) and (5)

S̃tΛt

S̃sΛs

= exp
{ [
µ− r − 1

2
(σ2 + θ2)

]
(t− s)

+ (θ + σ)(W̃t − W̃s) +

NJt∑
j=NJs+1

(ϑ+ 1)Zj

− λ(Jt − Js)
(
β + EP

[
eϑZj − 1

]) }
,

then

EP

[
S̃tΛt

S̃sΛs

∣∣∣Hs

]
= exp

{
(µ− r + θσ)(t− s)

+ λ(Jt − Js)
(
EP

[
e(ϑ+1)Zj − 1

]
−

(
β + EP

[
eϑZj − 1

]) )}
.

Thus, if θ and ϑ satisfy (6) and (7), the martingale
condition holds. ⊓⊔

For simplicity, we adopt the assumption of Mer-
ton [5] that the jumps are diversifiable in this paper,
that is ϑ = 0. Hence, under the risk neutral martin-
gale measure Q, the dynamics of stock S is given by

St = S0 exp

rt+ σWt −
1

2
σ2t+

NJt∑
j=1

Zj − λβJt

 ,
(8)

where Wt = W̃t − r−µ
σ t is a Q Brownian motion.

In addition, we also note that W, ε,N , and Z =
(Zj)j=1,2,... are mutually independent from measure
P to measure Q.

4 Pricing the forward starting op-

tions
4.1 Forward starting options

A forward starting call option is a simple exotic op-
tion. The strike of a forward starting option is relation
to the underlying asset, not as the same as the Euro-
pean call option. The payoff of a forward starting call
option is given by

Ψcall(ST ) = (ST −KSt∗)
+, (9)

where K ∈ (0, 1) and t∗ < T are constants. In this
paper, we only consider the case of t < t∗. If t∗ ≤ t,
a forward starting call option become a European call
option with strike KSt∗ .

Let Ψput(ST ) denote the payoff of a forward s-
tarting put option, it is given by

Ψput(ST ) = (KSt∗ − ST )
+. (10)
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4.2 A two-state regime switching Merton

jump diffusion model

In this subsection, we suppose that stock price S sat-
isfies a two-state regime switching Merton jump dif-
fusion process. The amplitude Zj of log jump of S
satisfies the normal distribution, and we assume that
mean and variance are 0 and γ2, respectively, that is

f(z) = 1√
2πγ

e
− z2

2γ2 , −∞ < z < ∞. Moreover,

β = e
γ2

2 − 1 in (8) since β = EP [e
Zi − 1].

We start by defining a new probability measure,
which will be used latter to pricing forward starting
options.

ηt =
dQS

dQ

∣∣∣
Ht

=
S̃t

EQ[S̃t|Fε
T ]

= exp

σWt −
1

2
σ2t+

NJt∑
j=1

Zj − λJtβ

 .
Proposition 2 Under the probability measure QS

and conditional on Fε
T ,

WS
t =Wt − σt

is a Brownian motion, the intensity λ∗ of Poisson pro-
cess N and the probability density function f∗(z) of
Zj are given by

λ∗ = λ (β + 1)

and

f∗(z) =
ezf(z)

β + 1
.

Proof: Using the Bayes formula, we have

EQS

e
iu

NJT∑
j=1

Zj
∣∣∣∣∣Fε

T



= EQ

e
(iu+1)

NJT∑
j=1

Zj−λJT β+σWT− 1
2
σ2T

∣∣∣∣∣Fε
T


= eλJT

{
EQ[e(iu+1)Zj ]−1−β

}
= e

λ∗JT

{∫∞
−∞(eiuz−1)f∗(z)dz

}
. (11)

The second equality holds since W, ε,N , and Z =
(Zj)j=1,2,... are mutually independent. By (11), we

find that, under the probability measure QS and con-
ditional on Fε

T , the intensity of N is λ∗ = λ (β + 1),
and the probability density function of Zj is f∗(z) =
ezf(z)
β+1 . In addition, by the Girsanov theorem, we have

that WS
t =Wt − σt is a QS Brownian motion. ⊓⊔

From Proposition 2, we can obtain the following
result.

Remark 3 If the stock price S satisfies a two-state
regime switching Merton jump diffusion process, un-
der the probability measure QS , the Poisson process

N has intensity λ̃ = λe
γ2

2 , and Z = (Zj)j=1,2,...

have probability density f̃(z) = 1√
2π
e
− (z−γ2)2

2γ2 , z ∈
(−∞,∞).

Let ϕJT−Jt|εt=ei(y) denote the condition probability
density of JT − Jt under the measure P and given
εt = ei, Yoon et al.[18] provided the analytic formula
of ϕJT−Jt|ε=ei(y), that is, for ∀y(0 ≤ y ≤ T − t)

ϕJT−Jt|εt=e1(y) = exp [−a22(T − t− y)− a11y]

×
{(

a11a22y
T−t−y

) 1
2 I1

(
2 (a11a22y(T − t− y))

1
2

)
+a11I0

(
2 (a11a22y(T − t− y))

1
2

)}
,

ϕJT−Jt|εt=e2(y) = exp [−a22(T − t− y)− a11y]

×
{(

a11a22(T−t−y)
y

) 1
2 I1

(
2 (a11a22y(T − t− y))

1
2

)
+a22I0

(
2 (a11a22y(T − t− y))

1
2

)}
,

and ϕJT−Jt|εt=e1(0) = 0, ϕJT−Jt|εt=e1(T − t) =

e−a11(T−t), ϕJT−Jt|X=e2(T − t) = e−a22(T−t),
ϕJT−Jt|εt=e2(T − t) = 0, where Ib(x) :=

(x2 )
b

∞∑
n=0

(x
2
)2n

n!Γ(b+n+1) .

Given εt = ei, let C(t, ei) denote the condition-
al price of forward starting call option at time t, it is
given as the following theorem.

Theorem 4 For 0 ≤ t < t∗ < T and ∀i = 1, 2,
the value of forward starting call option at time t and
given εt = ei is

C(t, ei) =
2∑

j=1

∫ T−t∗

0
J (t, y)

× P ij(t− t∗)ϕJT−Jt∗ |εt∗=ej (y)dy,

where

J (t, y) = St

∞∑
n=0

(
πn(λ̃, y)N (d1(n, y))

− Ke−r(T−t∗)πn(λ, y)N (d2(n, y))
)
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πn(λ, y) = e−λy (λy)
n

n!
,

d1(n, y) =
(r + 1

2σ
2)(T − t∗)− λβy√

σ2(T − t∗) + nγ2

+
nγ2 − lnK√

σ2(T − t∗) + nγ2
,

d2(n, y) = d1(n, y)−
σ2(T − t∗)√

σ2(T − t∗) + nγ2
,

P 11(t) =
a21

a21 − a11
+

a11
a11 − a21

e−(a21−a11)t,

P 22(t) =
a11

a11 − a21
+

a21
a21 − a11

e−(a21−a11)t,

P 12(t) = 1− P 11(t),

P 21(t) = 1− P 22(t),

N (·) denotes the cumulative normal distribution func-
tion.

Proof: For simplicity of notation, let Et,S,i
Q [·] denote

the conditional expectation under the risk neutral mar-
tingale measure Q, given St = S and εt = ei.

Based on the risk neutral pricing theorem, we
have

C(t, ei) = Et,S,i
Q

[
e−r(T−t) (ST −KSt∗)

+
]
. (12)

Define

J (t, JT − Jt∗) = EQ

[
e−r(T−t) (ST −KSt∗)

+ |Ht

]
.

Then, using the law of iterated expectations, we get

C(t, ei) = Et,S,i
Q [J (t, JT − Jt∗)] . (13)

We first derive J (t, JT − Jt∗), by Bayes formula,

J (t, JT − Jt∗)

= StEQS

I{ ST
St∗

≥K

}∣∣∣∣Ht


− Ke−r(T−t)EQ

St∗I{ ST
St∗

≥K

}∣∣∣∣Ht


= StEQS

I{ ST
St∗

≥K

}∣∣∣∣Ht


− Ke−r(T−t)StEQ

St∗
St
I{ ST

St∗
≥K

}∣∣∣∣Ht


= StEQS

I{ ST
St∗

≥K

}∣∣∣∣Ht


− Ke−r(T−t∗)StEQ

I{ ST
St∗

≥K

}∣∣∣∣Ht

 .

Combing the Proposition 2 with (8), the above equa-
tion can rewrite as

J (t, JT − Jt∗)

= StQS

(
(r +

1

2
σ2)(T − t∗)− λβ(JT − Jt∗)

+ σ(WS
T −WS

t∗) +

NJT∑
j=NJt∗+1

Zj ≥ lnK
∣∣∣Ht

)

− KSte
−r(T−t∗)Q

(
(r − 1

2
σ2)(T − t∗)

− λβ(JT − Jt∗) + σ(WT −Wt∗)

+

NJT∑
j=NJt∗+1

Zj ≥ lnK
∣∣∣Ht

)
= Π1 −Π2. (14)

We obtain from Remark 3 that

Π1 = St

∞∑
n=0

πn(λ̃, JT − Jt∗)

× QS

(
(r +

1

2
σ2)(T − t∗)− λβ(JT

− Jt∗) + σ(WS
T −WS

t∗) +
n∑

j=1

Zj ≥ lnK
∣∣∣Ht

)
.

Noting that for j = 1, 2, ..., Zj satisfies the normal
distribution and independent of WS , we have

Π1 = St

∞∑
n=0

πn(λ̃, JT − Jt∗)N (d1(n, JT − Jt∗)). (15)

Furthermore, employing the same method, we can ob-
tain

Π2 = Ke−r(T−t∗)St

∞∑
n=0

πn(λ, JT − Jt∗)

× N (d2(n, JT − Jt∗)). (16)

ϕJT−Jt∗ |εt=ei(y) denotes the condition probability
density of JT − Jt∗ under the measure P and con-
ditional on εt = ei. However, the transition proba-
bility of the Markov chain ε is not altered from the
real word probability measure P to the risk neutral
martingale measure Q since Brownian motion W̃ and
Markov chain ε are assumed to be independent. Then
by (13), we have

C(t, ei) =

∫ T−t∗

0
J (t, y)ϕJT−Jt∗ |εt=ei(y)dy.
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In addition, since

ϕJT−Jt∗ |εt=ei(y) =
2∑

j=1

ϕJT−Jt∗ |εt∗=ej (y)

× P (εt∗ = ej |εt = ei),

and by the homogeneous property of Markov chain ε,
we have

C(t, ei) =
2∑

j=1

∫ T−t∗

0
J (t, y)P ij(t− t∗)

× ϕJT−Jt∗ |εt∗=ej (y)dy. (17)

In what follows, we first calculate P ij(t− t∗). By the
Kolomogrov forward equation, we get

dP 11(t)

dt
= P 11(t)a11 + P 12(t)a21

= P 11(t)a11 + a21 − P 11(t)a21.

Hence

de(a21−a11)tP 11(t) = (a21 − a11)e
(a21−a11)t

× P 11(t)dt+ e(a21−a11)tdP 11(t)

= a21e
(a21−a11)tdt,

then

P 11(t) =
a21

a21 − a11
+

a11
a11 − a21

e−(a21−a11)t.

By the same way, we have

P 22(t) =
a11

a11 − a21
+

a21
a21 − a11

e−(a21−a11)t.

Specifically, P 12(t) = 1 − P 11(t), P 21(t) = 1 −
P 22(t). Therefore, we complete the proof of Theorem
4. ⊓⊔

Let P (t, ei) denote the value of forward starting
put option at time t and given εt = ei. The following
Proposition 5 provides the value of forward starting
put option.

Proposition 5 The value of forward starting put op-
tion at time t under a two-state regime switching Mer-
ton jump diffusion model is given by

P (t, ei) = C(t, ei) + St
(
Ke−r(T−t∗) − 1

)
.

Proof: From (9) and (10), we can obtain

Ψput(ST )−Ψcall(ST ) = KSt∗ − ST ,

then

P (t, ei)− C(t, ei)

= EQ

[
e−r(T−t)

(
Ψput(ST )−Ψcall(ST )

) ∣∣∣Ft

]
= EQ

[
e−r(T−t) (KSt∗ − ST )

∣∣∣Ft

]
. (18)

Furthermore, sinceQ is a risk neutral martingale mea-
sure, the discount price process e−rtSt is a Q martin-
gale with respect to Ft. Thus

EQ

[
e−r(T−t)KSt∗

∣∣∣Ft

]
= Ke−r(T−t∗)St, (19)

and

EQ

[
e−r(T−t)ST

∣∣∣Ft

]
= St. (20)

By (18), (19) and (20), we obtain the result. ⊓⊔

Remark 6 If the stock price S follows the Black-
Scholes model, the value of forward starting call op-
tion is

StN (d̄1)−Ke−r(T−t∗)N (d̄2),

where

d̄1 =
(r + 1

2σ
2)(T − t∗)− lnK

σ
√
T − t∗

,

d̄2 = d̄1 − σ
√
T − t∗.

Remark 7 If the stock price S follows the Merton
jump diffusion model without regime switching, the
value of forward starting call option is

St

∞∑
n=0

(
πn(λ̃, T − t∗)N (d1(n, T − t∗))

− Ke−r(T−t∗)πn(λ, T − t∗)N (d2(n, T − t∗))
)
.

4.3 A two-state regime switching double ex-

ponential jump diffusion model

In this subsection, we suppose that the amplitude Zj

of log jump of the stock price S satisfies a double
exponential distribution with the probability density
function f(z), which is given by following

f(z) = pη1e
−η1zI{z≥0} + qη2e

η2zI{z<0}, (21)

where p, q ≥ 0, p+q = 1, η1 > 1, η2 > 0, p, q denote
the probability of upward and downward, respectively.
That is

Zj
d
=

{
ξ+, with probability p
ξ−, with probability q

}
,
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where ξ+ and ξ− are random variables which follow
exponential distribution with mean 1

η1
and 1

η2
, respec-

tively. The term λβJt is included explicitly in (4)
to compensate for the presence of the jumps in share
price, hence it is chosen such that β = EP

[
eZj − 1

]
,

then β = pη1
η1−1 + qη2

η2+1 − 1.
In what follows, we provide two lemmas which

are Proposition B.1 and B.3 in Kou [6] for proving
Theorem 12.

Lemma 8 For ∀ n ≥ 1, we can obtain the following
decomposition

n∑
i=1

Zi
d
=



m∑
i=1

ξ+i , with probabilityPn,m,

m = 1, 2, ...n

−
m∑
i=1

ξ−i , with probabilityQn,m,

m = 1, 2, ...n


,

where Pn,m and Qn,m are given as following

Pn,m =
n−1∑
i=m

(
n−m− 1
i−m

)(
n
i

)(
η1

η1 + η2

)i−m

×
(

η2
η1 + η2

)n−i

piqn−i, 1 ≤ m ≤ n− 1,

Qn,m =
n−1∑
i=m

(
n−m− 1
i−m

)(
n
i

)(
η1

η1 + η2

)n−i

×
(

η2
η1 + η2

)i−m

pn−iqi, 1 ≤ m ≤ n− 1,

Pn,n = pn, Qn,n = qn and

(
0
0

)
is defined as 1,{

ξ+i , i = 1, 2, ...
}

and
{
ξ−i , i = 1, 2, ...

}
are two in-

dependent and identically distribution random vari-
ables sequence, and satisfy the exponential distribu-
tions with parameters η1 and η2, respectively.

Definition 9 Hh function is defined by

Hhm(x) =

∫ ∞

x
Hhm−1(y)dy

=
1

m!

∫ ∞

x
(t− x)me−

t2

2 dt,

where m = 0, 1, 2, ..., Hh−1(x) = e−
x2

2 =√
2πφ(x) and Hh0(x) =

√
2π
∫−x
−∞ φ(y)dy.

Lemma 10 Assume that {ξ1, ξ2, ...} is a sequence of
independent and identically distribution random vari-
ables, and satisfy the exponential distributions with

parameter η > 0, random variableZ satisfies the nor-
mal distribution with mean 0 and variance σ2, then for
∀ n ≥ 1, we have

1. The probability density functions of Z +
n∑

i=1
ξi and

Z −
n∑

i=1
ξi are given by

f
Z+

n∑
i=1

ξi

(t) = (ση)n
e

(ση)2

2

σ
√
2π

× e−tηHhn−1

(
− t

σ
+ ση

)
,

f
Z−

n∑
i=1

ξi

(t) = (ση)n
e

(ση)2

2

σ
√
2π

× etηHhn−1

(
t

σ
+ ση

)
.

2. The tail probabilities of Z +
n∑

i=1
ξi and Z −

n∑
i=1

ξi

are given by

P (Z +
n∑

i=1

ξi ≥ x) = (ση)n
e

(ση)2

2

σ
√
2π

× In−1

(
x;−η,− 1

σ
,−ση

)
,

P (Z −
n∑

i=1

ξi ≥ x) = (ση)n
e

(ση)2

2

σ
√
2π

× In−1

(
x; η,

1

σ
,−ση

)
,

where

Im(c;α, β, δ) :=

∫ ∞

c
eαxHhm(βx− δ)dx, m ≥ 0,

and c, α, β, δ are constants.

From Proposition 2, it is easily obtain the following
proposition.

Proposition 11 Under the probability measure QS

and conditional on Fε
T , the intensity of Poisson pro-

cess N is λ̂ = λ
(

pη1
η1−1 + qη2

η2+1

)
, and the probability

density function of Zj is

f̂(z) = p̂η̂1e
−η̂1zI{z≥0} + q̂η̂2e

η̂2zI{z<0},

where η̂1 = η1 − 1, η̂2 = η2 + 1, p̂ = pη1
(1+β)(η1−1) ,

q̂ = qη2
(1+β)(η2+1) = 1− p̂.
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Proof: In light of Proposition 2, we obtain

f̂(z) =
ezf(z)

β + 1
=

pη1
(1 + β)

e−(η1−1)zI{z≥0}

+
qη2

(1 + β)
e(1+η2)zI{z<0}

=
pη1

(1 + β)(η1 − 1)
(η1 − 1)e−(η1−1)zI{z≥0}

+
qη2

(1 + β)(η2 + 1)
(η2 + 1)e(1+η2)zI{z<0}

= p̂η̂1e
−η̂1zI{z≥0} + q̂η̂2e

η̂2zI{z<0}.

In addition, since β = pη1
η1−1 + qη2

η2+1 − 1, we have

q̂ = qη2
(1+β)(η2+1) = 1 − p̂, and λ̂ = λ(β + 1) =

λ
(

pη1
η1−1 + qη2

η2+1

)
. Hence, we complete the proof of

Proposition 11. ⊓⊔
Let Ĉ(t, ei) denote the value of forward starting

call option at time t under a two-state regime switch-
ing double exponential jump diffusion model and giv-
en εt = ei. Now we will prepare to calculate Ĉ(t, ei).

Theorem 12 For 0 ≤ t < t∗ < T and ∀i = 1, 2,
the value of forward starting call option at time t and
conditional on εt = ei is given by

Ĉ(t, ei) =
2∑

j=1

∫ T−t∗

0
Ĵ (t, y)P ij(t− t∗)

× ϕJT−Jt∗ |εt∗=ej (y)dy,

where

δ1(y) = lnK − (r +
1

2
σ2)(T − t∗) + λβy,

δ2(y) = δ1(y) + σ2(T − t∗),

d3(y) =
−δ1(y)
σ
√
T − t∗

,

d4(y) = d3(y)− σ
√
T − t∗,

Ĵ (t, y) = e−λ̂yStN (d3(y))

+ StΥ(δ1(y), σ, λ̂, p̂, η̂1, η̂2, T − t∗)

− Ke−r(T−t∗)−λyStN (d4(y))−KSt

× e−r(T−t∗)Υ(δ2(y), σ, λ, p, η1, η2, T − t∗),

and for i = 1, 2

Υ(δi(y), σ, λ, p, η1, η2, T − t∗)

=
∞∑
n=1

πn(λ, y)
n∑

m=1

Pn,m

× (σ
√
T − t∗η1)

m

σ
√
2π(T − t∗)

e
(ση1)

2(T−t∗)
2

× Im−1

(
δi(y);−η1,−

1

σ
√
T − t∗

,−σ
√
T − t∗η1

)
+

∞∑
n=1

πn(λ, y)
n∑

m=1

Qn,m

× (σ
√
T − t∗η2)

m

σ
√
2π(T − t∗)

e
(ση2)

2(T−t∗)
2

× Im−1

(
δi(y); η2,

1

σ
√
T − t∗

,−σ
√
T − t∗η2

)
.

Proof: For the forward starting call option with the
expiration time T , we have the following price formu-
la:

Ĉ(t, ei) = Et,S,i
Q

[
e−r(T−t) (ST −KSt∗)

+
]
. (22)

Define

Ĵ (t, JT − Jt∗) = EQ

[
e−r(T−t) (ST −KSt∗)

+
∣∣∣∣Ht

]
.

Then by the above equation and (22) we get

Ĉ(t, ei) = Et,S,i
Q

[
Ĵ (t, JT − Jt∗)

]
. (23)

Using the similar method in the proof of Theorem 4,
we can obtain

Ĵ (t, JT − Jt∗)

= StQS

(
(r +

1

2
σ2)(T − t∗)− λβ(JT − Jt∗)

+ σ(WS
T −WS

t∗) +

NJT∑
j=NJt∗+1

Zj ≥ lnK
∣∣∣Ht

)

− KSte
−r(T−t∗)Q

(
(r − 1

2
σ2)(T − t∗)

− λβ(JT − Jt∗) + σ(WT −Wt∗)

+

NJT∑
j=NJt∗+1

Zj ≥ lnK
∣∣∣Ht

)
= Π3 −Π4. (24)

In the following, we calculate Π3 and Π4, respective-
ly.

Π3 = St

∞∑
n=0

πn(λ̂, JT − Jt∗)

× QS

(
(r +

1

2
σ2)(T − t∗)− λβ(JT − Jt∗)

+ σ(WS
T −WS

t∗) +
n∑

j=1

Zj ≥ lnK
∣∣∣Ht

)
.(25)
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It follows from Proposition 11 and Lemma 8 that Π3

is equivalent to

Stπ0(λ̂, JT − Jt∗)QS

(
σ(WS

T −WS
t∗) ≥ lnK

− (r +
1

2
σ2)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)
+ St

∞∑
n=1

πn(λ̂, JT − Jt∗)
n∑

m=1

Pn,m

× QS

(
σ(WS

T −WS
t∗) +

m∑
j=1

ξ+j ≥ lnK

− (r +
1

2
σ2)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)

+ St

∞∑
n=1

πn(λ̂, JT − Jt∗)
n∑

m=1

Qn,m

× QS

(
σ(WS

T −WS
t∗)−

m∑
j=1

ξ−j ≥ lnK

− (
1

2
σ2 + r)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)
.(26)

In addition, since ξ+j and ξ−j follow the exponential
distribution with parameters η̂1 and η̂2, respectively,
by the Lemma 10, we have

QS

(
σ(WS

T −WS
t∗) +

m∑
j=1

ξ+j ≥ lnK

− (
1

2
σ2 + r)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)

=
(σ
√
T − t∗η̂1)

me
(ση̂1)

2(T−t∗)
2

σ
√
2π(T − t∗)

× Im−1

(
δ1(JT − Jt∗);−η̂1,

−1

σ
√
T − t∗

,

− σ
√
T − t∗η̂1

)
, (27)

and

QS

(
σ(WS

T −WS
t∗)−

m∑
j=1

ξ−j ≥ lnK

− (
1

2
σ2 + r)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)

=
(σ
√
T − t∗η̂2)

me
(ση̂2)

2(T−t∗)
2

σ
√
2π(T − t∗)

× Im−1

(
δ1(JT − Jt∗); η̂2,

1

σ
√
T − t∗

,

− σ
√
T − t∗η̂2

)
, (28)

where

δ1(JT − Jt∗) = lnK − (r +
1

2
σ2)(T − t∗)

+ λβ(JT − Jt∗).

Moreover, it is easily to get

Stπ0(λ̂, JT − Jt∗)QS

(
σ(WS

T −WS
t∗) ≥ lnK

− (r +
1

2
σ2)(T − t∗) + λβ(JT − Jt∗)

∣∣∣Ht

)
= Ste

−λ̂(JT−Jt∗ )N (d3(JT − Jt∗)). (29)

Let

Υ(δ1(JT − Jt∗), σ, λ̂, p̂, η̂1, η̂2, T − t∗)

=
∞∑
n=1

πn(λ̂, JT − Jt∗)
n∑

m=1

Pn,m

× (σ
√
T − t∗η̂1)

m

σ
√
2π(T − t∗)

e
(ση̂1)

2(T−t∗)
2

× Im−1

(
δ1(JT − Jt∗);−η̂1,

− 1

σ
√
T − t∗

,−σ
√
T − t∗η̂1

)
+

∞∑
n=1

πn(λ̂, JT − Jt∗)
n∑

m=1

Qn,me
(ση̂2)

2(T−t∗)
2

× (σ
√
T − t∗η̂2)

m

σ
√
2π(T − t∗)

Im−1

(
δ1(JT − Jt∗); η̂2,

1

σ
√
T − t∗

,−σ
√
T − t∗η̂2

)
, (30)

using (25), (26), (27), (28), (29) and (30), we can de-
rive the following result

Π3 = St
[
e−λ̂(JT−Jt∗ )N (d3(JT − Jt∗)) +

Υ(δ1(JT − Jt∗), σ, λ̂, p̂, η̂1, η̂2, T − t∗)
]
. (31)

Furthermore, we use the same method to obtain

Π4 = Ke−r(T−t∗)St
[
e−λ(JT−Jt∗ )

× N (d4(JT − Jt∗)) (32)

+ Υ(δ2(JT − Jt∗), σ, λ, p, η1, η2, T − t∗)
]
.

Finally, it follows from (23), (24), (31) and (32) that

Ĉ(t, ei)

= StE
t,S,i
Q

[
e−λ̂(JT−Jt∗ )N (d3(JT − Jt∗))

+ Υ(δ1(JT − Jt∗), σ, λ̂, p̂, η̂1, η̂2, T − t∗)
]

− Ke−r(T−t∗)StE
t,S,i
Q

[
e−λ(JT−Jt∗ )

× N (d4(JT − Jt∗)) + Υ(δ2(JT − Jt∗),

σ, λ, p, η1, η2, T − t∗)
]
.
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Therefore, we complete the proof of Theorem 12. ⊓⊔
Let P̂ (t, ei) denote the value of forward starting

put option at time t under a two-state regime switching
double exponential jump diffusion model and given
εt = ei.

Proposition 13 The value of forward starting put op-
tion at time t under a two-state regime switching dou-
ble exponential jump diffusion model is

P̂ (t, ei) = Ĉ(t, ei) + St
(
Ke−r(T−t∗) − 1

)
.

The proof of Proposition 13 is similar to that of Propo-
sition 5. Here, we will no longer provide the proof.

Remark 14 If the stock price S follows a double ex-
ponential jump diffusion model without regime switch-
ing, the value of forward starting call option is

e−λ̂(T−t∗)StN (d3(T − t∗)) + St

× Υ(δ1(T − t∗), σ, λ̂, p̂, η̂1, η̂2, T − t∗)

− Ke−r(T−t∗)St
[
e−λ(T−t∗)N (d4(T − t∗))

+ Υ(δ2(T − t∗), σ, λ, p, η1, η2, T − t∗)
]
.

5 Conclusion
In this paper, the two-state regime switching jump dif-
fusion models are presented to model the dynamics of
the risky asset. Since the regime switching and jumps
render the financial market incomplete, we discuss the
problem of choosing risk neutral martingale measures.
Using the risk neutral pricing technique, we obtain the
closed form formulas of pricing forward starting op-
tions under the two cases of regime switching jump d-
iffusion models, namely, a two-state regime switching
Merton jump diffusion model and a two-state regime
switching double exponential jump diffusion model.
In further studies, the parameters of the model in our
paper can be considered as not constants. Moreover,
the valuation of other derivatives under this model can
be studied.
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